Self-organisation in photoactive fullerene porphyrin based donor-acceptor ensembles[†]

Dirk M. Guldi,*a Chuping Luo,a Angela Swartz,a Michael Scheloskeb and Andreas Hirsch*b

^a Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA. E-mail: guldi.1@nd.edu; Fax: +1 219 631 7441; Tel: +1 219 631 8068

^b Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestr.42, 91054 Erlangen,

Germany. E-mail: hirsch@organik.uni-erlangen.de; Fax: +49 9131 85 26864; Tel: +49 9131 85 22537

Received (in Cambridge, UK) 7th March 2001, Accepted 1st May 2001 First published as an Advance Article on the web 22nd May 2001

Complexation of $ZnP-C_{60}$ -ZnP triads with diazabicyclooctane (DABCO) leads to rigid assemblies that display considerably prolonged charge-separated states.

Control over the separation, specific alignment and composition in donor–acceptor assemblies at a molecular level is a formidable task, especially in artificial reaction centres. Meaningful incentives can be lent from the organisation-principle in the bacterial photosynthetic reaction centre:¹ the different lightand redox-active components are embedded *via* noncovalent interactions into a protein matrix. In principal, biomimetic methodologies, such as hydrogen-bonding, donor–acceptor complexation, electrostatic interactions and π – π stacking, guarantee the control over modulating the composition and, simultaneously, achieving well-defined and rigid architectures, with high directionality and selectivity.²

In the present communication we wish to present a simplistic but powerful means to regulate donor–acceptor separations and orientations. Successively, rigid, confined model ensembles are self-assembled, starting from a flexible **ZnP-C₆₀-ZnP** system and DABCO.^{3,4} The newly formed tetrads undergo, upon photoexcitation, efficient energy and electron transfer in toluene and *o*-dichlorobenzene solutions, respectively.

We selected for the current investigation the strongly fluorescing zinc tetraphenyl porphyrin (ZnP) chromophore as a photo-sensitive marker to monitor the extent of excited state interaction with the adjacent fullerene core. The porphyrinic precursors 1 and 2 were synthesised using a statistical approach,

starting with pyrrole and the corresponding benzaldehydes and subsequent reaction with malonyl chloride. In the final step, attachment to C_{60} was achieved via modified Bingel-conditions.^{4a}

New compounds 1–4 were completely characterised (see ESI[†]). The two different substitutional patterns of the phenyl-linkages (*i.e. para vs. meta*) were chosen to control possible orientations between the fullerene and porphyrin chromophores.

At first the porphyrin's emission in 3 and 4 was recorded in a variety of solvents and compared to that of a **ZnP-ZnP** reference (1). Most importantly, the *para-* and *meta-*linked **ZnP-C₆₀-ZnP** systems both gave rise to a fairly strong emission quenching of the ZnP chromophore with fluorescence quantum yields (Φ) on the order of 0.001 (see Table 1). Although the solvent polarity differs quite substantially the emission intensity changed only marginally. For reference the emission quantum yield (Φ) of 3 in toluene and also in *o*-dichlorobenzene is about 0.04.

The anisotropy of the fullerene surface, as it prevails in the well-ordered but alternating assembly of electron rich hexagons with electron deficient pentagons, generally gives rise to marked 'through-space' interactions.⁵ Thus, when structurally possible, fullerene-based ensembles adopt conformations in which the fullerene and the donor moieties come in close proximity, from which we hypothesise that the rapid deactivation of the ¹*ZnP state in **3** and **4** implies a rate-determining transition to form the electron transfer mediating 'intramolecular exciplex'.

In general a more efficient quenching (\sim two-fold) was noted for the *meta*- (4) relative to the more electron-rich *para*-linked derivatives (3). A possible interpretation for this evidently solvent-independent outcome relates to the different substitution pattern given on the phenyl ring and the subsequent impact that stems from an electronic interaction with the fullerene core.[‡] The *meta*-isomer is clearly more susceptible to interactions between the fullerene core and the porphyrin moiety. In line with this purely structural assumption is the observation that a weakly emitting transition around 800 nm was found only for the *meta*-linked **ZnP-C₆₀-ZnP** (4) in toluene. This NIR emission originates from a charge transfer state, despite its quantitative cancellation in stronger polar solvents, such as THF, *o*-dichlorobenzene and benzonitrile.

Time-resolved transient absorption spectroscopy was conducted to probe the fate of the photoexcited ZnP chromophore and to inspect the identity of the resulting products. In

Table 1 Photophysical properties of *para*- and *meta*-linked **ZnP-C**₆₀-**ZnP** $(1.3 \times 10^{-5} \text{ M})$ in different solvents

	(τ) ¹ *ZnP		(ϕ) ¹ *ZnP × 10 ³		$(\phi) ZnP^{\bullet+}-C_{60}^{\bullet-}$	
Solvent	(3)	(4)	(3)	(4)	(3)	(4)
Toluene THF <i>o</i> -dichlorobenzene Bzcn	122 ns 106 ns 101 ns	70 ns 75 ns 58 ns	1.62 1.50 1.46 1.18	0.83 0.79 0.81 0.64	0.018 0.02 0.019 0.016	0.008 0.012 0.014 0.009

[†] Electronic supplementary information (ESI) available: selected spectroscopic data. See http://www.rsc.org/suppdata/cc/b1/b102141i/

Fig. 1 Emission spectrum of 4 (1.3×10^{-5} M) in *o*-dichlorobenzene (dashed line) and upon addition of various DABCO equivalents (*i.e.*, 1, 5 and 10); excitation wavelength 550 nm.

Table 2 Influence of DABCO on the photophysical properties of *para-* and *meta-*linked **ZnP-C₆₀-ZnP** (1.3×10^{-5} M)

	Solvent	DABCO ^a	(<i>\phi</i>) ¹ *ZnP	$(\tau) ZnP^{\bullet+}-C_{60}^{\bullet-}$	(ϕ) ZnP ^{•+} –C ₆₀ •			
3	Toluene	0	1.62×10^{-3}	_	0.018			
		5	2.50×10^{-3}	b	b			
	o -DCB c	0	1.46×10^{-3}	290 ns	0.019			
		5	2.29×10^{-3}	702 ns	0.082			
4	Toluene	0	0.83×10^{-3}		0.008			
		5	2.14×10^{-3}	b	b			
	o -DCB c	0	$0.81 imes 10^{-3}$	150 ns	0.014			
		5	$2.40 imes 10^{-3}$	724 ns	0.086			
^{<i>a</i>} Equivalents of DABCO. ^{<i>b</i>} Triplet excited state. ^{<i>c</i>} <i>o</i> -Dichlorobenzene.								

particular, the instantaneously formed ZnP singlet-singlet absorption, which is in reference 1 subject to a slow intersystem crossing (2.5 ns) to the triplet excited state, decays rather rapidly (~100 ps) following the completion of the short laser pulse in 3 and 4 (18 ps; 532 nm). Furthermore, this fast deactivation is coupled with a synchronously occurring grow-in of a new transient absorption, which in all solvents revealed a set of VIS and NIR maxima at ~650 and 1030 nm, respectively.⁵ These features resemble the spectral fingerprints of the one-electron oxidised ZnP and the one-electron reduced fullerene, respectively. From this we conclude that the resulting ZnP*+- C_{60} - radical pair is formed *via* a photoinduced electron transfer from the ZnP singlet excited state to the electron accepting fullerene. The charge-separated state, formed with moderate quantum yields, decayed on a time scale of a few hundred nanoseconds to regenerate the ground state.

Addition of DABCO to a toluene and *o*-dichlorobenzene solution of triads **3** and **4** led to a strong reactivation of the ZnP emission (Fig. 1 and Table 2). Taking the emission reactivation into account the ZnP in both tetrads disclose nearly the same fluorescence quantum yields. Parallel picosecond experiments, which indicate prolonged ^{1*}ZnP singlet lifetimes (~185 ps) in **5** and **6** compared with **3** (106 ps) and **4** (75 ps), further

corroborated the emission studies. Both effects can be rationalised in terms that complexation of DABCO to the vacant sites of the two ZnP (*i.e.* dz^2 -orbitals)³ increases the donor-acceptor separation considerably (*i.e.* triad vs. tetrad). The bridging motif with the monomeric compounds **5** and **6** was confirmed by molecular modelling using semi-empirical methods. The formation of coordination oligomers can be largely excluded since no dependence of the spectroscopic properties on the DABCO concentration was observed for 1.3×10^{-5} M solutions of **3** and **4**. The amplification of the emission between the triads and corresponding tetrads is less prominent in toluene ($\varepsilon = 2.38$) than in *o*-dichlorobenzene ($\varepsilon = 9.93$). To follow up on this issue, the pathway of ZnP deactivation was examined by revisiting the pico- and nanosecond experiments. In *o*-dichlorobenzene, the typical radical ion fingerprints, formed concurrently with the ¹*ZnP decay, unmistakably attest to an electron transfer mechanism.

On the contrary, the absorption features noted upon excitation of a toluene solution are fundamentally different. In fact, new broad absorption maxima at 360 and 720 nm are an exact match of the fullerene triplet features.⁵ The above experiments, considered in concert, infer that a rapid intramolecular energy transfer, from the ¹*ZnP (2.06 eV) to the energetically lower lying ¹*C₆₀ (1.79 eV),⁵ prevails in toluene with a quantum yield of 0.57. This is then followed by an efficient *intersystem crossing* to generate the triplet excited state (1.50 eV)⁵ with a unimolecular rate constant of $7.1 \times 10^8 \text{ s}^{-1}$. The energy transfer pathway in **5** and **6** is in sharp contrast to the excited state behaviour seen for **3** and **4**, disclosing even in toluene the spectral characteristics of the ZnP++C₆₀-- radical pair.

The forward electron transfer is, however, not the only parameter affected by the increased donor-acceptor separation (*i.e.* triad vs. tetrad): in addition, markedly higher quantum yields (Φ) and longer lifetimes (τ) of the ZnP⁺⁺-C₆₀⁻⁻ radical pair were noted. Interestingly, the back electron transfer dynamics in **5** and **6** gives rise to approximately the same rate constant of 1.3×10^6 and 1.4×10^6 s⁻¹, respectively, reflecting the nearly equal donor-acceptor separations in these rigid systems.

In conclusion, we have shown by spectroscopic and photochemical means that a simple complexation of DABCO to a series of flexible **ZnP-C₆₀-ZnP** triads, and thereby affording the corresponding tetrads, is a powerful tool to control the design and photophysical properties of rigidly, confined donoracceptor systems.§

Notes and references

‡ Further support for this difference can be deduced from the ground state absorption spectra, which in the case of the *meta*-substituted isomer reveals a marked red-shift of the *Soret*- and *Q*-band transitions (*e.g.*, in toluene 550 \rightarrow 552 nm; 588 \rightarrow 590 nm).

§ This work was supported by the Office of Basic Energy Sciences of the Department of Energy and the Stiftung Volkswagenwerk. This is document NDRL# 4294 from the Notre Dame Radiation Laboratory.

- 1 J. Deisenhofer, O. Epp, I. Sinning and H. Michel, J. Mol. Biol., 1995, 246, 429.
- 2 Leading examples of noncovalent donor-acceptor assemblies (a) P. Tecilla, R. P. Dixon, G. Slobodkin, D. S. Alavi, D. H. Waldeck and A. D. Hamilton, J. Am. Chem. Soc., 1990, **112**, 9408; (b) P. J. F. de Rege, S. A. Williams and M. J. Therien, Science, 1995, **269**, 1409; (c) J. P. Kirby, J. A. Roberts and D. G. Nocera, J. Am. Chem. Soc., 1997, **119**, 9230; (d) S. L. Springs, D. Gosztola, M. R. Wasielewski, V. Kral, A. Andrievsky and J. L. Sessler, J. Am. Chem. Soc., 1999, **121**, 2281; (e) K. Yamada, I. Imahori, E. Yoshizawa, D. Gosztola, M. R. Wasielewski and Y. Sakata, Chem. Lett., 1999, 235; (f) M.-J. Blanco, M. C. Jimenez, J.-C. Chambron, V. Heitz, M. Linke and J.-P. Sauvage, Chem. Soc. Rev., 1999, **28**, 293; (g) J. L. Sessler, B. Wang, S. L. Springs and C. T. Brown, in Comprehensive Supramolecular Chemistry; Y. Murakami (ed.), Pergamon Press Ltd, Oxford, UK, 1996, Vol. 4, pp. 311–335.
- 3 See for example: (*a*) A. Hunter, M. N. Meah and J. K. M. Sander, *J. Am. Chem. Soc.*, 1990, **112**, 5773; (*b*) P. N. Taylor and H. L. Anderson, *J. Am. Chem. Soc.*, 1999, 121.
- 4 (a) E. Dietel, A. Hirsch, E. Eichhorn, A. Reiker, S. Hackbarth and B. Röder, *Chem. Commun.*, 1998, 1981; (b) D. M. Guldi, C. Luo, T. Da Ros, M. Prato, E. Dietel and A. Hirsch, *Chem. Commun.*, 2000, 375; (c) D. M. Guldi, C. Luo, M. Prato, E. Dietel and A. Hirsch, *Chem. Commun.*, 2000, 373.
- 5 D. M. Guldi and M. Prato, Acc. Chem Res., 2000, 33, 695.